A parallel Cholesky algorithm for the solution of symmetric linear systems
نویسندگان
چکیده
منابع مشابه
A parallel Cholesky algorithm for the solution of symmetric linear systems
For the solution of symmetric linear systems, the classical Cholesky method has proved to be difficult to parallelize. In the present paper, we first describe an elimination variant of Cholesky method to produce a lower triangular matrix which reduces the coefficient matrix of the system to an identity matrix. Then, this elimination method is combined with the partitioning method to obtain a pa...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولA Cholesky Algorithm for Some Complex Symmetric Systems
Complex symmetric systems do not in general admit a Cholesky factorization without pivoting, as would be the case for hermitian systems. Nevertheless, for some complex symmetric systems, as those coming from the discretization of boundary integral formulations, pivoting can be avoided. We present a Cholesky factorization algorithm for such complex symmetric systems. We propose a LAPACK-style im...
متن کاملAN ALGORITHM FOR FINDING THE EIGENPAIRS OF A SYMMETRIC MATRIX
The purpose of this paper is to show that ideas and techniques of the homotopy continuation method can be used to find the complete set of eigenpairs of a symmetric matrix. The homotopy defined by Chow, Mallet- Paret and York [I] may be used to solve this problem with 2""-n curves diverging to infinity which for large n causes a great inefficiency. M. Chu 121 introduced a homotopy equation...
متن کاملIterative Solution of Skew-Symmetric Linear Systems
We offer a systematic study of Krylov subspace methods for solving skew-symmetric linear systems. For the method of conjugate gradients we derive a backward stable block decomposition of skew-symmetric tridiagonal matrices and set search directions that satisfy a special relationship, which we call skew-A-conjugacy. Imposing Galerkin conditions, the resulting scheme is equivalent to the CGNE al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2004
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171204202265